The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific

نویسندگان

  • Jinguang Hu
  • Valdeir Arantes
  • Amadeus Pribowo
  • Jack N Saddler
چکیده

BACKGROUND Currently, the amount of protein/enzyme required to achieve effective cellulose hydrolysis is still too high. One way to reduce the amount of protein/enzyme required is to formulate a more efficient enzyme cocktail by adding so-called accessory enzymes such as xylanase, lytic polysaccharide monooxygenase (AA9, formerly known as GH61), etc., to the cellulase mixture. Previous work has shown the strong synergism that can occur between cellulase and xylanase mixtures during the hydrolysis of steam pretreated corn stover, requiring lower protein loading to achieve effective hydrolysis. However, relatively high loadings of xylanases were required. When family 10 and 11 endo-xylanases and family 5 xyloglucanase were supplemented to a commercial cellulase mixture varying degrees of improved hydrolysis over a range of pretreated, lignocellulosic substrates were observed. RESULTS The potential synergistic interactions between cellulase monocomponents and hemicellulases from family 10 and 11 endo-xylanases (GH10 EX and GH11 EX) and family 5 xyloglucanase (GH5 XG), during hydrolysis of various steam pretreated lignocellulosic substrates, were assessed. It was apparent that the hydrolytic activity of cellulase monocomponents was enhanced by the addition of accessory enzymes although the "boosting" effect was highly substrate specific. The GH10 EX and GH5 XG both exhibited broad substrate specificity and showed strong synergistic interaction with the cellulases when added individually. The GH10 EX was more effective on steam pretreated agriculture residues and hardwood substrates whereas GH5 XG addition was more effective on softwood substrates. The synergistic interaction between GH10 EX and GH5 XG when added together further enhanced the hydrolytic activity of the cellulase enzymes over a range of pretreated lignocellulosic substrates. GH10 EX addition could also stimulate further cellulose hydrolysis when added to the hydrolysis reactions when the rate of hydrolysis had levelled off. CONCLUSIONS Endo-xylanases and xyloglucanases interacted synergistically with cellulases to improve the hydrolysis of a range of pretreated lignocellulosic substrates. However, the extent of improved hydrolysis was highly substrate dependent. It appears that those accessory enzymes, such as GH10 EX and GH5 XG, with broader substrate specificities promoted the greatest improvements in the hydrolytic performance of the cellulase mixture on all of the pretreated biomass substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover

BACKGROUND It is widely recognised that fast, effective hydrolysis of pretreated lignocellulosic substrates requires the synergistic action of multiple types of hydrolytic and some non-hydrolytic proteins. However, due to the complexity of the enzyme mixture, the enzymes interaction with and interference from the substrate and a lack of specific methods to follow the distribution of individual ...

متن کامل

Evaluation of the use of alpha-amylase, cellulase, xylanase, and beta-glucanase enzymes in vitro and in vivo on non-specific immune indices, intestinal bacterial flora, cholesterol, and blood glucose of rainbow trout

One of the limitations of aquaculture is the supply of fish meal needed for the aquaculture industry, but the use of plant items instead of fish meal contain anti-nutrients such as non-starch polysaccharides, which is one of the main limitations of using plant items in the diet of carnivorous fish. The present study investigated the in vivo and in vitro enzymes of alpha-amylase, cellulase, xyla...

متن کامل

Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification

BACKGROUND Efficient hydrolysis of lignocellulosic materials to sugars for conversion to biofuels and chemicals is a key step in biorefinery. Designing an active saccharifying enzyme system with synergy among their components is considered a promising approach. RESULTS In this study, a lignocellulose-degrading enzyme system of Chaetomium globosum BCC5776 (CG-Cel) was characterized for its act...

متن کامل

Inhibition of Trichoderma Species from Growth and Zoospore Production of Phytophthora Drechsleri and Their Effects on Hydrolytic Enzymes

Understanding the function of Trichoderma species in the control of Phytophthora drechsleri in pistachio orchards is very important.  In this study, the effects of liquid extra-cellular secretions and volatile compounds secreted by 27 isolates of Trichoderma harzianum, T. crassum, T. koningii, T.aureoviride, T. asperellum, T. brevicompactum, T.longibrachiatum and T. virens were investigated on ...

متن کامل

The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

BACKGROUND We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013